About Me
I am a postdoctoral researcher in the Kavli Institute for Cosmology Cambridge, the Institute of Astronomy, and the Statistical Laboratory of the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. My research focuses on problems at the interface of astrophysics, statistics, and machine learning. I am the Program Chair-Elect of the Astrostatistics Interest Group of the American Statistical Association.
Prior to Cambridge, I was a postdoctoral fellow in the Machine Learning Department at Carnegie Mellon University, where I was a core member of the CMU-based Delphi Group and Team Lead of the forecasting development and evaluation initiative. Under the supervision of Prof. Ryan Tibshirani, my team devoted our work to developing statistical models for forecasting COVID-19 incidence in the United States in order to support and advise the Centers for Disease Control and Prevention’s COVID-19 forecasting effort. I also held a guest researcher appointment at the Flatiron Institute's Center for Computational Astrophysics in New York.
I earned a Joint Ph.D. in Statistics and Machine Learning from Carnegie Mellon University in 2020 under the multidisciplinary supervision of Professors Larry Wasserman, Jessi Cisewski-Kehe, and Rupert Croft. My dissertation "Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of the Universe" was devoted to a variety of problems in astrostatistics and astroinformatics, and was selected (by faculty vote) as the 2020-'21 winner of the Umesh K. Gavaskar Memorial Award for the Best Ph.D. Dissertation in Statistics and Data Science at Carnegie Mellon. Prior to earning my Ph.D., I received an M.Sc. in Machine Learning from Carnegie Mellon and a B.Sc. in Mathematics from the University of Kansas.
Outside of my work, I enjoy athletics, reading, traveling, any food wrapped in a tortilla, and everything about parenting my angelic golden retriever, Maximus.
My name is pronounced kä•lən pō•lich.
Publications
Three-dimensional cosmography of the high redshift Universe using intergalactic absorption

Trend Filtering - I. A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
Trend Filtering - II. Denoising Astronomical Signals with Varying Degrees of Smoothness
The Young Supernova Experiment Data Release 1 (YSE DR1): Light Curves and Photometric Classification of 1975 Supernovae
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US
An Open Repository of Real-Time COVID-19 Indicators
Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of the Universe
Mapping the Large-Scale Universe through Intergalactic Silhouettes
Augmenting Adjusted Plus-Minus in Soccer with FIFA Ratings
News
[Publisher] [medRxiv] [COVID-19 Forecast Hub]
[Publisher] [medRxiv] [Supplement] [Data Access]
Finalists: Josh Speagle (Harvard), Collin Politsch (CMU), Matt Ho (CMU), Oliver Philcox (Princeton), Richard Feder (Caltech).
Contact
Images






















